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Theoretical and experimental studies have been performed on fully developed two- 
dimensional turbulent channel flows in the low Reynolds number range that are 
subjected to system rotation. The turbulence is affected by the Coriolis force and the 
low Reynolds number simultaneously. Using dimensional analysis, the relevant 
parameters of this flow are found to be Reynolds number Re* = u* D / v  (u* is the 
friction velocity, D the channel half-width) and Qv/u2, (0 is the angular velocity of the 
channel) for the inner region, and Re* and 0 D / u ,  for the core region. Employing these 
parameters, changes of skin friction coefficients and velocity profiles compared to non- 
rotating flow can be reasonably well understood. A Coriolis region where the Coriolis 
force effect predominates is shown to exist in addition to conventional regions such as 
viscous and buffer regions. A flow regime diagram that indicates ranges of these 
regions as a function of Re* and 101 v/u2, is given from which the overall flow structure 
in a rotating channel can be obtained. 

Experiments have been made in the range of 56 < Re* d 310 and -0.0057 < 0v/u2, 
< 0.0030 (these values correspond to Re = 2Um D / v  from 1700 to 10000 and rotation 
number Ro = 2102) D / U m  up to 0.055; Urn is bulk mean velocity). The characteristic 
features of velocity profiles and the variation of skin friction coefficients are discussed 
in relation to the theoretical considerations. 

1. Introduction 
In engineering, one encounters different kinds of flow through a duct that is rotating 

around an axis perpendicular to its axis: for example, flows in turbo-machinery or 
through a cooling passage in a rotating machine such as a gas turbine or electric motor. 
The flow in a rotating duct undergoes Coriolis force effects. Mean axial velocity Urn, 
rotation angular velocity 52 and the geometry of the duct (its size and cross-sectional 
shape) vary widely from flow to flow, and the flow characteristics differ accordingly. 
The various characteristics of the flow phenomena in a rotating duct are attributed to 
the combination of two kinds of Coriolis force effects on the flow. First, a secondary 
flow is induced within a duct if there is a mean vorticity component perpendicular to 
the rotating axis (caused by the endwall effect). Secondly, there are promot- 
ing/suppressing effects on the turbulence if there is a mean vorticity component 
parallel to the rotating axis. The two effects are exerted simultaneously on flows in a 
rectangular duct having a small aspect ratio, say of less than four, and the velocity 
distributions change appreciably from stationary duct flow. Moore (1967) indicated 
that the secondary flow is a major reason for the change in low-aspect-ratio ducts in 
the range of his experimental spin parameter. If we confine ourselves to ducts having 
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an aspect ratio larger than four and consider the flow only in a mid-plane of the duct, 
the secondary flow caused by the endwall effect does not appear and the flow can be 
seen as nominally two-dimensional. The Coriolis force has only the latter effect on the 
two-dimensional flow. On the suction side of the channel, the turbulent activities are 
weakened, whereas they are augmented on the pressure side, and the velocity 
distributions across the channel deform accordingly. 

Pioneering work was done by Johnston, Haleen & Lezius (1972) on the fully 
developed turbulent flow through a duct of aspect ratio seven. They measured the 
velocity distributions at the rather high Reynolds number range of 11 500 d Re d 
35000 and the rotation number Ro up to 0.21. Here the Reynolds number Re and the 
rotation number Ro are defined based on bulk mean velocity U ,  and channel height 
2 0  as Re = 2U, Dlv ,  Ro = 2 lsZl DIU,. Together with the results obtained by flow 
visualization, they demonstrated the Coriolis effect in three stability-related phenom- 
ena: (i) it changes the wall-layer streak bursting rate which causes the modification of 
turbulent energy and mean velocity profile; (ii) it can suppress the transition to 
turbulence in the suction-side flow; (iii) it may develop a large-scale roll cell in the 
pressure-side flow. An appropriate local stability parameter is shown to be the 
Richardson number that was introduced by Bradshaw (1969) for the rotating flow by 
analogy with stratified flow. 

Launder, Tselepidakis & Younis (1987) made a numerical calculation for fully 
developed rotating channel flow using second-moment closure and obtained good 
agreement with the experimental results of Johnston et al. Shima (1993) used an 
improved second-moment closure to simulate the flow that can be applicable when 
including relaminarization phenomena. Both simulations succeeded somewhat in 
capturing the Coriolis force effects on the velocity and turbulence intensity distributions 
because, unlike the k--E model, the second-moment closure includes explicitly the 
Coriolis force terms which have a crucial role in changing the structure of turbulence. 
Large-eddy simulations (LES) were made by Miyake & Kajishima (1986) and by Kim 
(1983) up to rotation numbers 0.2 and 0.068, respectively. Miyake & Kajishima 
presented various statistical turbulence quantities and concluded that near the wall the 
Coriolis force enhances sweep and ejection on the pressure side, while reducing them 
on the suction side. Kristoffersen & Anderson (1993) recently performed DNS at 
Reynolds number Re = 5800 and rotation number up to 0.5. They showed that 
relaminarization occurs on the suction side, and Taylor-Gortler-like counter-rotating 
streamwise vortices appear on the pressure side if the rotation number is sufficiently 
high. 

When the Reynolds number is low, a rotating channel flow is subjected to the 
Reynolds number effect in addition to the Coriolis force effect. It is known that the low 
Reynolds number flow is apt to be more strongly affected by Coriolis force effects than 
the high Reynolds number flow. In practice there exist low Reynolds number flows 
such as a rotating machine cooling passage the dimension of which must be small 
owing to a geometrical constraint. Thus, from an engineering point of view, it is also 
necessary to understand Coriolis force effects in the low Reynolds number range. The 
main objective of the present work is to elucidate the overall flow structure that is 
simultaneously affected by the Coriolis parameter and Reynolds number effects. 

In 52 the control parameters and velocity similarity formulae are developed from 
dimensional considerations. The experimental apparatus and methods are given in 5 3. 
In $4 the experimental results and discussion, first for non-rotating low Reynolds 
number flow then for rotating channel flow, are presented. Finally, some concluding 
remarks are given in 55. 
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2. Theoretical considerations 
2.1. Dimensional analysis 

Here we consider turbulent flow through a two-dimensional channel that is rotating 
with angular velocity 52 around the z-axis, (figure 1). The flow is in the x-direction and 
fully developed so that the mean velocity U changes in the y (wall distance) direction 
only. The configurations of the pressure and suction sides in figure 1 are reversed when 
B < 0. The channel width is 2 0 .  The velocity U is described as a function of five 
variables : 

(1) 

where u, and v are friction velocity and kinematic viscosity, respectively, and are 
conveniently set to make (1) non-dimensional for the flow close to the wall. The non- 
dimensional velocity can then be written as 

(2) 

(3) 

These equations show that the non-dimensional mean velocity and its gradient 
normalized by u, and v / u ,  are functions of the distance from the wall y+ = yu,/v, the 
Coriolis parameter Bv/u; ,  and the Reynolds number Re* = u* D/v .  

Three length scales appearing in the present turbulent flow are the viscous S, and 
Coriolis 6, lengths and channel half-width D. The viscous length scale a,( = u/u*)  is a 
measure of the distance from the wall within which the viscous effect on the flow 
predominates. The Coriolis length scale S,( = u,/lQl) is a measure of the distance from 
the wall above which the Coriolis force plays an important role. D is a measure of the 
largest length scale (or other length scale) of the flow. Using these length scales, three 
independent variables in (2) and (3) can be expressed as ratios among these scales and 
y .  The alternative expression for (2) then becomes 

(4) 

where the plus or minus sign indicates pressure or suction side, respectively. In the case 
of non-rotating channel flow having high Reynolds number, the last two parameters 
in (4), SJS, and D/S,, are no longer necessary to describe the flow, for SJS, = 00 and 
D/8,  is significantly large. Then (4) reduces to the well-known wall law 

u = f , (D,  y ,  u*, v, 521, 

Ulu, =f2(yu*/v ,  u2,/Qv, u* D l v ) .  

d(U/u*)/d(yu*lv) =f3(yu*/v ,  u ; /Qv ,  u* Dlv) .  

The corresponding functional relation holds for the velocity gradient : 

u+ = u/u* =f,(vl~,,  k S,/S,, DIS,), 

2.2. Flow regime of rotating channel flow 
Flows within a rotating channel are characterized by two parameters, &S,/S, and 
D/8,, which are ratios among the three length scales S,, 8, and D. These scales play a 
significant role in the regions 

y < Kl 8, 

y > K,S, 

y > K3 D 

(viscous length scale S,), 
(Coriolis length scale SJ, 
(outer length scale D),  

where K,, K, and K3 are constants. Figure 2 schematically shows the flow field divided 
into several areas, in which the particular length scales prevail. The boundaries between 
the areas can be drawn on a (1521 v/u;,  Re*) parameter plane as in figure 3. We call this 
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a (> 0) 

X 

FIGURE 1. Flow geometry and coordinate system. Pressure and suction sides in the figure are for 
52 > 0. 

't Relevant length 
scale 

............ - ...,. ....... t:: : : :: ::;:: : :: : ::: : :: :: :: 
Wall 

FIGURE 2. Ranges of each length scale. 

FIGURE 3. Flow regime diagram. 
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a flow regime diagram because each area enclosed by the boundaries has its own flow 
characteristics. This diagram indicates geometrically how the flow structure changes as 
the parameters Re* and If21 u/u', vary. 

The axes a and b of the diagram indicate the Coriolis parameter (521u/u', and 
Reynolds number Re* in a log scale, respectively. Plane bOc perpendicular to the a-axis 
shows the flows that are substantially unaffected by the Coriolis force (extremely small 
1521 vlu',). The line parallel to the b-axis ( y / D  = K,) indicates a boundary above which 
the flow is influenced by the scale D. The broken line (y' = K,) is the upper boundary 
of the viscosity-affected region. From much experimental data on channel flow, the 
constants K, and K3 are seen to have values of around 3&50 and 0.2-0.3, respectively. 
As Re* increases, a region appears that is bounded above and below by these two lines 
(hatched area) where neither D nor S, influences the flow and the velocity follows a log 
law. 

The plane aOc perpendicular to the b-axis shows flows having a constant Reynolds 
number, low Re*. The line y / S ,  = K, is the lower boundary of the region where the 
Coriolis force has an appreciable effect on the flow. In the diagram a surface satisfying 
the relation y / S ,  = rC, is given by the equation 

In ( y / D )  +In (S,/S,) = In (K,) - In (Re*). (7) 

This surface, called the &-plane hereafter, is the lower boundary of the region affected 
by the Coriolis force. 

When the flow Re* is increased but 1521 v/u', is kept constant, the lower boundary of 
the Coriolis-force-affected region is shown, say, by the bold line A-B on the &-plane. 
This line has a constant value ofy+, as can be seen when it is projected on the bOc-plane 
as the fine chain line A'-B'. On the other hand, when )Q2( u/ui  is increased but Re* is 
kept constant, the lower boundary is shown by the bold line C-D on the &plane. The 
line projected on the bOc-plane shows that the Coriolis force effect penetrates deep into 
smaller y+ as If21 v/u', is increased. This means that the lower boundary, if expressed by 
a wall variable, depends only on (521 v /u%,  and not on Re*. The value of K, is not yet 
known but has a value of the order of 

Jacquin et al. (1990) developed a similar consideration of the interaction between the 
Coriolis length f,( = v'/20, v' is turbulence intensity) and the integral scale of 
turbulence L for homogeneous turbulent flow within a rotating frame. Using the ratio 
between these two length scales l JL ,  the Rossby number, they discussed the dissipation 
rate of the turbulence in a rotating frame. They also considered the viscous effects as 
well by using a parametric diagram among Ekman, Rossby and Reynolds numbers. 

2.3. Similarity laws of the velocity projile 
Figure 3 indicates that the flow in a rotating channel can be divided into several 
different regions where particular length scales dominate. In each region a velocity 
similarity law is expected to exist. 

as shown later from experimental data. 

2.3.1. Viscous and buffer region 

an important role and equation (3) can be expanded as 
Very close to the wall, where y /S ,  = y+ is less than K,, the viscous length scale plays 

d( U/u,)/d(y/S,) = 1 + A,y+ + A a + ' .  . . , (8) 

where A,,  A,,  . . . , are constants. A well-known velocity profile U+ = y+ results from (8) 
for extremely small y+, usually y+ < 5. Various functional relations are proposed for 
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a slightly higher value of y+. Among them, the Van-Driest formula is the most useful, 
for it can apply beyond the buffer region as well. This formula, 

includes two constants, A+ and K .  A+ is the Van-Driest damping factor and K the 
K a r m b  constant. If the Reynolds number is very high and 1521 v /u i  is small, A+ is 26 
and K = 0.4. 

When Re* is small and/or 101 v/u: is large and satisfy the following relations; 

the effects of scale D and/or 6, appear in the buffer or viscous region. Under these 
conditions, the coefficients A,,  A, ,  . . . in (8) and A+ and K in (9) are no longer constant 
but depend on Re* and/or on SZv/ui like 

Ai = A,(Re*,Qv/u:), i = 1,2, ... , (12) 
A+ = Af(Re*, SZv/u:), K = K(Re*, Qv/u:). (1 3) 

2.3.2. Log and Coriolis regions 
In the log region that appears in high Reynolds number flow, no characteristic length 

scales prevail. Re* should be larger than K J K ,  for the log region to exist in a stationary 
channel. Equation (3) then reduces to the simple relation 

d(U/u*)/d(y/6,) = l/(KY/S,) (14) 

U+ = (l/K)lny++C,. (15) 

which gives a well-known log-law: 

In figure 3, the shaded area on the bOc-plane corresponds to this region. In a rotating 
channel, an additional condition Kl 6, < K, 6, is necessary for the log region to exist so 
that the Coriolis force effect does not appear there. 

The log region is penetrated by the Coriolis length scale if lsll is increased and the 
relation 

K,D > K,6, 

holds. In the penetrated region, 6, is the only length scale of the flow, and equation (3) 
can be expanded like 

so that dU/dy depends on 6, and u* but not on 6, and D. Here, 2p is a constant. 
Integrating this with y+, we obtain the velocity formula 

SZV 

u* 

1 
U+ = - l n y + - 2 2 ~ , ~ + + ~  2 ,  

K 

where C, is an integral constant. This relation is consistent with the one developed by 
Bradshaw (1969) for the flow affected by the Coriolis force using the Monin-Oboukov 
formula. The constant /3 is called the Monin-Oboukov coefficient. Subtracting (15) 
from (18) gives the velocity difference AU' from the conventional log law as 
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Here, if we introduce a new variable, y,* = y/S,, an alternative similarity expression 
for the velocity gradient can be obtained: 

d U+/dYZ =f,(y/S,>. (20) 

The region where the above relation holds is called the Coriolis region, for only the 
Coriolis length scale plays a role there. Integrating (20) with respect to y,*, we obtain 

where yZ0 is the lowest value of y,* in the Coriolis region. A comparison of equations 
(18) and (21) shows that &(y,*) has the following form: 

where plus and minus signs correspond to the suction and pressure sides, respectively. 
Thusf, is expressed as 

The Coriolis region is bounded above by the requirement that the scale D does not 
influence the region, which imposes the following relation : 

y/Sc < K, D/Sc = K3 Re* ISZI v /u i .  

The lower side of this region is bounded by different requirements depending on Kl 6, 
> K, 8, or Kl 8, < K, 8,. In the first case, when the Coriolis force effect is not sufficient 
to penetrate the viscous or buffer region, the lower boundary is given as 

In the second case, K, 8, > K2 S,, when the Coriolis force is quite strong and affects the 
flow in the viscous or buffer region, it is given as 

Thus, the viscous effect does not appear in the Coriolis region. 
Another way of expressing the velocity profile within the log and Coriolis region is 

to adopt the log law, equation (15), assuming that K and C, are not constants but 
depend on Re* and Qv/u2, as 

K = K(Re*,av/u;), C, = C,(Re*,Ov/u;). (27) 

Watmuff, Witt & Joubert (1985) and Koyama et al. (1979) adopted the above relation 
to estimate the Coriolis force effect in the log region. 

2.3.3. Core region 
The core region is an area where outer scale D is dominant while the viscous scale 

does not appear. Adopting D and u* as the basic dimension set, the dimensionless 
expression (3) is replaced by the following relation: 

d(U/u*)ld(y/D) =fS(y/D, v/u* D, QD/u*).  (28) 

When v/Du,  and f2D/u, approach 0, the above equation leads to the usual defect law. 
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The Coriolis parameter in the core region is QD/u,, which means a ratio between 
the time scales of l/Q and D/u,. In the case when QD/u ,  is quite large (i.e. an 
overwhelming Coriolis force), the local shear stress T is greatly altered from non- 
rotating channel flow by the Coriolis force effect, so u* is not suitable as the velocity 
scale there. Thus, it is appropriate to adopt u’/Q and u’( = (7,’~)’’~) rather than D and 
u* as the length and velocity scales. Then the functional form of dU/dy,f,, that does 
not include D, u* and v, becomes 

dU/dy = AQ. (29) 

According to the experiment of Johnston et aZ. (1972) and DNS by Kristoffersen & 
Anderson (1993) at high rotation rate, the constant A is estimated to be 2. Equation 
(29) is derived for rapidly rotating channel flow. For the moderately rotating case, no 
explicit expression can be obtained from dimensional considerations. The following 
velocity deviation is introduced from equation (29) : 

dUldy-2252 = u,/Df,(y/D, SZD/U,). (30) 

(Uc-  U-2QO/U, =f,(Y/D,Wu*),  (31) 

Integrating this with respect to y gives the following modified defect law : 

where 5 = D-y and U, is the velocity at y = D. 

3. Experimental apparatus and methods 
Figure 4 shows the general arrangement of the rotating channel and velocity 

measuring system. Air from the blower first passes through an orifice plate for 
measuring the flow rate Q and enters the rotating system through an inlet port 1, then 
passes through a settling chamber 14 where a honeycomb, screens and a contraction 
are equipped, and finally enters the test channel. The test channel has cross-sectional 
dimensions of 10 x 80 mm and a total length of 2000 mm. A velocity measuring station 
is located at x = 1800 mm ( x / D  = 361) downstream from the channel inlet section, 
where the flow was two-dimensional and fully developed for the stationary channel. 
There are pressure holes at x/D = 140, 220 and 360 for measuring the wall static 
pressure. The channel can rotate around the z-axis at the prescribed angular velocity 
Q. A hot-wire anemometer system is placed in the rotating frame, above of the channel, 
and the signals from it are transferred to the stationary frame through slip rings 7. The 
hot wire is made of tungsten (5 pm diameter) having a sensing length of 1 mm. 

The hot-wire probe is traversed along the channel mid-plane by a gear mechanism 
driven by a pulse motor (0.01 mm/step). The wire closest to the wall is measured by 
viewing the wire and its reflection image reflected from the wall in a microscope within 
the accuracy of 3 pm. 

Accurate velocity measurements close to the wall are crucial to estimate the friction 
velocity u, from the velocity gradient to the wall. However, hot-wire anemometer 
measurements near the wall result in erroneous velocity data due to additional heat loss 
to the wall (see Bhatia, Durst & Jovanovic 1982). Various compensation formulae for 
this phenomenon were proposed but did not yield consistent results. We developed a 
new scheme to estimate u* from the U-profile near the wall, y+ > 5 ,  where the wall 
effect is negligible (see Bhatia et d.). First, we assume that the flow has a log region 
(Karman constant K is as yet unknown). Within the log region the following relation 
holds : 

(32) ydU/dy = U * / K  = y = constant. 
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FIGURE 4. Experimental apparatus: 1, inlet port; 2 ,  exit port; 3, rotating shaft; 4, pulley; 5, pressure 
taps; 6 ,  slip ring for power supply; 7, slip ring for signal; 8,9,  hot-wire anemometer and temperature 
compensation units; 10, test channel; 11, traversing gear; 12, hot-wire probe; 13, microscope stand; 
14, settling chamber. 
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FIGURE 5. Velocity data fitting with the Van-Driest formula. -, Van-Driest velocity formula ; 

see table 1 for symbols. 
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YID 
FIGURE 6. Shear stress distributions measured by x -wires. 0, Reynolds shear stress; 0, total 

shear stress; Arrows indicate wall shear stress estimated by velocity fitting method. 

Using the measured data in the range of the assumed log region, the constant y in (32) 
can be obtained. Using u* and y ,  the Van-Driest velocity formula can be expressed as 

Here A+ and u* are unknowns and determined so that the functional form (33) fits best 
the measured velocity profile in the range of 5 < y+ < 100. Then the Karmhn constant 
K can be calculated from (32). Figure 5 shows examples of the fitting for a stationary 
channel at Re = 5500 and 10000. When the logarithmic velocity profile does not exist, 
in low Reynolds number flow, the velocity gradient method should be used instead of 
the above method. To evaluate the velocity gradient at the wall, the wall corrections 
are applied to the measured velocity by subtracting the additional velocity caused by 
the wall effect. Figure 6 compares the wall shear stresses estimated by the above 
methods (indicated by arrows) with those obtained by extrapolating to the wall the 
measured total shear stress using a x-wire. The differences in 7, between the two 
methods are typically within & 5 %. 

For the stationary channel, R, = 0, the measured shear stress follows the linear 
distribution of fully developed flow. Considering the long inlet length adopted here 
( x / D  = 361), the rotating channel flows are also considered to be fully developed. 
Further, the static pressures measured at three streamwise sections with and without 
rotation follow linear profiles from which the friction factor can be calculated. This is 
another confirmation of the fully developed flow. 
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FIGURE 7. Velocity distributions measured at three spanwise sections for Re = 3700, 
Sections: @, Z = 0 mm; a), Z = 5 mm; 0, Z = 10 mm. 
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RQ = 140. 

1' 
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Y 

FIGURE 8. Spanwise variation of velocity and shear stress distributions reproduced from figure 14 of 
Watmuff et a/. (1985). Velocity: 0, Z = 0 mm; A, Z = 40 mm; 0, Z = - 10 mm. Reynolds shear 
stress: @, Z = 0 mm; A, Z = 40 mm; ., Z = - 10 mm. 

The shear stress profiles for the rotating channel at Re = 3700 and R, = 70 and 140 
in figure 6 are curved on the pressure side in contrast to the straight ones expected for 
the fully developed two-dimensional flow. The main reason for the curved profile is the 
existence of roll cells developed on the pressure side because V and W (where V and 
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Run 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 

34 
35 
36 

2DU, 
Re = __ 

Y 

1700 

2500 

3700 

4500 

5500 

8000 

4D2 lSZl 
R, = I, 

0 
27P 
74P 

47s 
74s 

0 
27P 
74P 

145P 

74s 
145s 

0 
70P 

120P 
140P 

140s 

0 

0 

120s 

0 
f120P 
1120s 

( 0  
10 000 '120P 

11 20s 

2 0  P I  
Um 

R, = ~ 

0.0000 
0.01 59 
0.0435 
0.0159 
0.0276 
0.0435 

0.0000 
0.0108 
0.0296 
0.0547 
0.0108 
0.0296 
0.0547 

0.0000 
0.0189 
0.0324 
0.0378 
0.01 89 
0.0324 
0.0378 

0.0000 
0.0156 
0.0267 
0.0156 
0.0267 

0.0000 
0.0127 
0.0218 
0.0127 
0.0218 

0.0000 
0.0150 
0.0 150 

0.0000 
0.0120 
0.0120 

Du Re" = 2 
V 

67 
78 
79 
58 
56 
58 

99 
103 
110 
118 
90 
74 
77 

I22 
133 
137 
157 
106 
94 
95 

145 
154 
157 
134 
123 

174 
182 
183 
168 
159 

234 
252 
23 1 

300 
310 
29 1 

0.00000 0.0000 
0.001 10 0.0864 
0.00290 0.2350 

-0.00197 -0.1150 
-0.00369 -0.2080 
-0.00573 -0.3250 

0.00000 0.0000 
0.00064 0.0658 
0.001 53 0.1680 
0.00262 0.2900 

-0.00083 -0.0750 
-0.00334 -0.2480 
- 0.005 75 - 0.4430 

0.00000 0.0000 
0.00099 0.1330 
0.001 60 0.2330 
0.001 42 0.2230 

-0.00156 -0.1630 
- 0.003 43 - 0.3 I60 
-0.00387 -0.3680 

0.00000 0.0000 
0.00073 0.1 140 
0.001 22 0.1910 

-0.00095 -0.1300 
-0.00197 -0.2440 

0.00000 0.0000 
0.00053 0.0959 
0.00089 0.1630 

-0.00062 -0.1040 
-0.001 19 -0.1890 

0.00000 0.0000 
0.00047 0.1190 

- 0.000 56 0.1300 

0.00000 0.0000 
0.00031 0.0970 

-0.00035 -0.1030 

TABLE 1. Experimental conditions. For definitions see the text 

W are wall-normal and spanwise velocity components) can affect the shear stress 
profile as 

From this indirect evidence, it is conjectured that roll cells exist on the pressure side. 
Because of these roll cells, the flow in the rotating channel is not considered to be two- 
dimensional on the pressure side even in the mid-plane. Figure 7 shows the velocity 
profiles (Re = 3700, R, = 140) measured at three different spanwise section z = 0 
(mid-plane), 5 and 10 mm. No appreciable difference can be seen among them despite 
the roll cells. This difference in sensitivity of shear stress and velocity profiles to the roll 
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cells is also seen in Watmuff et al. (1985). They measured the spanwise variations of 
mean velocity and Reynolds stresses in developing turbulent boundary layers with 
system rotation. Figure 8, reproduced from figure 14 in their paper, shows that the 
variation of the shear stress profile is far greater than that of mean velocity. Also, 
comparison between figures 6 and 17(a) in their paper confirms that the spanwise 
variation of the wall-law profile is greatly exceeded by the variation caused by the 
Coriolis stabilizing/destabilizing effect itself. Thus, even though the roll cells are 
unavoidable in the rotating channel, the mean velocity profiles measured in the mid- 
plane are not substantially altered by them. 

The experimental uncertainties in mean velocity U and wall shear stress r,  are 
estimated to be f 2 % and & 5 % of their values (20 : 1 odd), respectively. 

The experiments are performed under the conditions shown in table 1. The mean 
axial velocity Urn appearing in Re and Ro is defined as Q/(cross-sectional area of the 
channel). Positive values of Qv/u2, and QD/u,  are for the pressure side, while negative 
ones are for the suction side. The letters P and S after the rotational Reynolds number 
R, = (20)' lQ / / v  indicates the pressure and suction side of the channel, respectively. 
Symbols given in the table for each run are used in the figures unless otherwise 
indicated in the caption. 

4. Experimental results and discussion 
4.1. Friction factor and skin friction coeficient 

Figure 9 shows the variation of friction factor h with Re for various R,. The friction 
factor is defined by 

where Ap is the pressure drop between x/D = 220 and 360. The stationary channel data 
coincide quite well with the theoretical curve for a channel of aspect ratio eight in the 
laminar region and with a Blasius formula in the turbulent region. As R, is increased, 
h increases in the laminar region due to the development of the roll cells (see Speziale 
& Thangam 1983). In the turbulent region, h does not change much with R,. This 
constancy of h is because the increase of r,  on the pressure side is just cancelled out 
by the decrease of r, on the suction side. 

Figure 10 shows the relation between the skin friction coefficient C,, defined as C, 
= 2r,/(pU&), and Re for stationary and rotating channel flows. From the stationary 
channel data the transition to turbulent flow occurs between Re = 1500 and 1700. In 
the turbulent region C, almost coincides with the empirical formulae proposed by 
Dean (1978) or Johnston et a f .  (1972). For the rotating channel flow, the value of C, 
increases at the pressure side and decreases at the suction side in relation to the 
stationary channel value with increasing R,. The rate of change becomes larger as the 
Reynolds number is reduced if the rotation Reynolds number R, is the same. This 
means that there is a strong Reynolds number dependence of the Coriolis force effect 
on the turbulent flow. This Re-dependence can be seen in the flow regime diagram. In 
the parameter plane of figure 3 ,  R, = const. can be expressed as 

(36) 2 In Re* +In ( l Q (  v/u2,) = const. 

The line P-Q on the aOb plane in figure 3 is the R, = constant line. The line projected 
on the &-plane, P-Q', shows that as Re* decreases, the Coriolis force penetrates inside, 
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i.e. smaller y+, thus a strong Coriolis effects appears in the wall region. Physically, this 
result can be understood as when Re decreases, rotation acts on weaker turbulence so 
that it can modify the turbulence more easily. 

At the suction side, C, decreases as R, increases and finally approaches the values 
(hatched region in figure 10) far below the stationary channel value but slightly higher 
than the laminar flow value (broken line). Here the flow is considered to be 
relaminarized by the Coriolis stabilizing effect. Since the difference in C, between non- 
rotating and relaminarized flows increases as Re increases, the rate of reduction of C, 
in the relaminarized flow increases with Re. 

In the literature to date, the Coriolis force effect on the wall shear stress was 
indicated by variations of the friction velocity ratio u* /ux0  (where u*o represents the 
friction velocity without rotation) against the rotation number Ro = 2 If21 D/ Urn as 
shown in figure 1 1. There, the data for various Reynolds numbers are compared. The 
present data as well as the DNS data of Kristoffersen & Anderson (1993), all for Re 
< 10000, do not coincide with those of Johnston et al. (1972) measured at high 
Reynolds number. There is an appreciable Reynolds number dependence among the 
data. 

As described in §2,0v/u2, is a relevant parameter describing the Coriolis force effect 
close to the wall. It is expected that the Re-dependence of u,/u,, in figure 11 would be 
absorbed into a parameter Ov/u2,. The present data and those of Johnston et al. (1972) 
and Kristoffersen & Anderson (1993) are plotted in figure 12 using this new 
parameter. 

The data on the suction side are well correlated with the empirical relation 

( U * / U * , ) ~  = Cf/C,, = 1 .O + 160R~/u2, (37) 

(indicated by a solid line in the figure) in the range Qv/u2, > - 2.3 x 
The data for Re >, 2500 deviate from (37) in the range Rv/u2, d -2.3 x 

and Re > 2500. 
whereas 
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FIGURE 12. Skin friction coefficient ratio against QvIu2,. For symbols see figure 11. Additional 
data from Johnston et al. (1972): 0 ,  Re = 1 1  400. 

the data for Re < 2500 deviate somewhere between -2.3 x and 0, depending on 
the Reynolds number of the flow. The off-line data are considered to be relaminarized 
flow from various evidence, such as the C, value in figure 10, the velocity distribution 
plotted on the semi-log graph shown later in figure 18 or the flow visualization of 
Johnston et al. (1972). A further decrease in the parameter from the point of deviation 
makes C, slightly lower and finally almost constant. The rate of reduction of C, from 
its stationary channel flow value increases with Re. 

It is conjectured that the relaminarization on the suction side occurs in two different 
ways, depending on whether or not the Reynolds number exceeds about 2500. In the 
case of Re 2 2500, relaminarization occurs when i22v/ui = -2.3 x lop3; in this case the 
Coriolis stabilizing effect is a main reason for the flow reversion to laminar. When 
Re < 2500, the criterion for the relaminarization depends not only on the Coriolis 
parameter but also on the Reynolds number. The Coriolis force reduces u* and 
stabilizes the turbulent motion on the suction side. When the Reynolds number is low, 
say less than 2500, u* is reduced by the Coriolis force to below the level necessary to 
sustain the turbulent activity before the Coriolis direct stabilizing effect relaminarizes 
it. The lower the Re of the flow, the smaller the Qv/u2, necessary to reduce u* below 
the critical level, and the relaminarization depends on both Re and Qv/u2,. 

On the pressure side, some dispersion is seen among the data and the empirical 
relation of equation (37) indicates merely their average trend. One possible reason for 
this is that the wall shear stress on the pressure side may have some inhomogeneity in 
the spanwise direction due to the roll cells appearing on the pressure side as indicated 
by Watmuff et al. (1985), who reported more than a 15% variation in C, in the 
spanwise direction. 

4.2. Velocity profiles at low Reynolds number in a stationary channel 
Before showing velocity profiles in a rotating channel, it is useful to show various 

aspects of the low Reynolds number flow in a stationary channel. The overall accuracy 
of the experimental data presented in this paper can also be estimated by comparing 
the measured data with others obtained for a stationary channel. 

Figure 13 shows the semi-log plot of measured mean velocity profiles in the low 
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FIGURE 14. Constants K and C, in a log-law plot against Re. See table 1 for symbols. 
x , Reproduced from Dean; ---, Patel & Head. 

Reynolds number range (1700 9 Re d 10000). The velocity profiles shift downward as 
Re increases and finally settle on the high Reynolds number universal wall-law profile 
when Re 2 8000. Comparisons of the profiles of Re = 8000 and 10000 with others of 
high Reynolds number reveal that the present data are consistent with those of Comte- 
Bellot (1963) and Clark (1968), but about 10% higher than those of Hussain & 
Reynolds (1975). The recent experimental data of Antonia et al. (1992) for a universal 
log law are shown by the hatched band located between the present and Hussain & 
Reynolds profiles. From these comparisons, it is conjectured that the measured U +  is 
about 5 %  larger than the typical U +  obtained by previous workers. 
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The Re-dependence of the velocity profile can be expressed as variations of constants 
C, and K with Re (see (27)), figure 14. The data below Re = 4500 in this figure should 
be taken with some reservation, for some subjective line-fitting was done in the log 
region. It shows that C ,  increases from around 5 at Re = 10000 as Re decreases. The 
present result is in good agreement with that obtained by Pate1 & Head (1969) for pipe 
flows (see the broken line in the figure). However, K does not change with Re. As the 
Reynolds number decreases, the effect of the outer scale D on the turbulence appears 
in the buffer region and changes the structure of turbulence there, causing C ,  to change 
with Re. Huffman & Bradshaw (1972) adopted the Van-Driest damping factor A' to 
express the change of velocity profile in the buffer region in low Reynolds number 
flows. Figure 15 shows how A' changes with Re*. (In the figure shear stress gradient 
-dr+/dy' is used as the abscissa instead of Re* in accordance with Huffman & 
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Bradshaw.) In fully developed channel flow, -d7*/dy+ = Re*-'. At high Reynolds 
number, A+ = 26, and it increases as Re* decreases. The present results agree quite well 
with Huffman & Bradshaw's result. 

Figure 16 indicates the velocity defect law for various Reynolds numbers. The 
present data deviate upward from the high Reynolds number profile of Hussain & 
Reynolds (1975), at some y / D .  The y / D  position where the data start to deviate from 
the high-Re line depends on the Reynolds number of the flow; the lower the Re, the 
larger the value of y / D .  This means that the viscous effect penetrates the central part 
of the channel as Re (or Re*) decreases. If the position y / D  is expressed by wall 
variables, it is always around 30-50 irrespective of Re. This indicates that the constant 
Kl in (6a )  is about 30-50. 

4.3. Velocity profiles a t  low) Reynolds number in a rotating channel 
Figure 17 shows the velocity profiles U / U ,  versus y / D  in a rotating channel at quite 
lower Reynolds numbers (Re = 1700, 2500 and 5500). The overall velocity profile 
measured at Re higher than 5500 and at  Rn = 120 is very similar to that for the 
stationary channel. Since the velocity profiles are measured only along the half-channel 
width, 0 < y d D, with positive or negative 0, the suction-side profiles are displaced to 
the other side of the channel, D < y < 2 0 ,  and connected with the pressure-side profile 
to make the full profile shown in the figure. Thus a small discontinuity at the junction 
point ( y  = D )  is unavoidable. The qualitative features of the overall change of the 
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profile due to the Coriolis force are the same as reported by Johnston et al. (1972) and 
Kristoffersen & Anderson (1 993). 

Mean velocity profiles in a rotating channel presented using wall variables are shown 
in figure 18 for Re = 3700 and 8000. As generally acknowledged, owing to the Coriolis 
force effect the suction-side profiles shift upward from the non-rotating conventional 
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wall law, whereas the profiles for the pressure side shift downward. The deviations 
from the conventional log law increase with R, and largely depend on the Reynolds 
number of the flow. From this figure it can be seen that the Coriolis force effect 
penetrates the wall region as R, increases or Re decreases. The depth of penetration, 
if expressed using a wall variable, depends only on (01 v/ui as shown in $2. Here we 
introduce y:./,, that is the distance from the wall at which the velocity profile deviates 
by 1 % from the non-rotating profile. To estimate y:% the velocity profiles are 
compared in their interpolated forms using the Akima (1972) interpolation method. 
This y:.,, is a measure of the distance the effect of the Coriolis force penetrates. Figure 
19 shows the relation between y:./, and (01 v/ui.  Although there is some scatter among 
the data, y:,,, decreases monotonically along a line irrespective of the Reynolds 
number. The lines in the figure show equation (6b) with particular K ,  values. From this 
figure the constant K, is found to be 0.008-0.015. 

The mean velocity profile variation in a rotating channel like the one presented in 
figure 18 can be seen as variations of the constants K and C,. They depend on Re* (or 
Re) and Qv/u2,, see equation (27), as shown in figure 20. Similar to the stationary 
channel flow, the Karman constant K is independent of the Reynolds number but varies 
with Q v / u i  in a rotating channel. An empirical formula for K is 

1 / ~  = 2.63-4.940v/u i .  (38) 

This relation differs from that of Watmuff et al. (1985), developed for boundary layer 
flow, shown by the broken line in the figure. It is not clear why there is a difference 
between the channel and boundary layer flows. The constant C, depends on both Re 
and Qulu2,. For the non-rotating flow shown in figure 14, C, is substantially constant 
when Re > 8000 (Re* > 230). In a rotating channel a similar consequence holds: when 
Re > 8000, C, depends only on sZv/ui; however, it depends on both of them when Re 
< 8000. Even in the case of Re smaller than 8000, the friction velocity u* increases with 
Qv/u2, on the pressure side and Re* becomes large (i.e. the flow is analogous to high 
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Reynolds number flow). This is why the family of C, curves for different Re converge 
into a single curve where Ov/u2, > 1.0 x lop3. The variations of constants C, with Re 
and Ov/u2, can be expressed as variations of A+ if the Van-Driest velocity model is 
adopted. Figure 21 (a) shows that A+ does not change much from the non-rotating flow 
on the suction side, whereas it increases significantly with Ou/u i  on the pressure side. 
Since A+ reflects the structure of turbulence in the buffer region, some structural 
change, such as the contribution of sweeps or ejections to the Reynolds stress (see 
Miyake & Kajishima 1986), is expected on the pressure side. Figure 21 (b), where A+ 
is plotted against - d.r+/dy+, shows this tendency more clearly. Both the non-rotating 
and suction-side data follow a single curve, consistent with the results of Huffman & 
Bradshaw (1972), whereas the pressure-side data follow different curves depending on 

Another way of describing the velocity profile change is as a deviation from the 
conventional log law AU' against y+. As given by (19), AU+ changes linearly with y+. 

R,. 
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Qv/u2 -0.00056 -0.00035 0.00031 0.00047 0.00089 0.001 22 

P 4.2 3.6 3.5 2.8 2.8 4.5 

TABLE 2. The Monin-Oboukov coefficient, ,8 

Figure 22 confirms that the relation holds true in the range y+ > 50, except when the 
flow is relaminarized. There are two types of lines, one passing through the origin and 
the other not doing so. Lines passing through the origin indicate the flows for which 
the additive constant C, = C, because the Coriolis force effect is not strong enough to 
change the buffer region flow. The latter lines correspond to the flows whose constant 
C, is changed from C, by the effect of the Coriolis force. From the slope of these lines, 
the Monin-Obukhov coefficient p can be obtained using (19). Table 2 shows ,8 
obtained for various SZvlu2,. The values are distributed around 3-4. Among the many 
proposals relating to the coefficient p, So (1975) indicated that p = 4-6 is the most 
promising estimation to fit various experimental results. The present result also 
confirms this suggestion. 

As the rotation rate increases, the log region is penetrated by the Coriolis force effect, 
and the Coriolis region appears as described in $2. Figure 23 (a,  b), where the relations 
between dU+/dy,* and yZ for various conditions are shown, confirms the existence of 
this region. The solid line indicates equation (23) derived for the Coriolis region, 
assuming the constants K = 0.4 and p = 4. The data points for each flow condition 
partly follow the line as is expected from the theory developed in $2. Figure 24(a, 6) 
shows the ranges of the Coriolis region, estimated from figure 23, by vertical lines with 
symbols at the top and bottom. From the theoretical consideration in 42, the Coriolis 
region is bounded by three relations, (24)-(26). In figure 24 the possible y,* range of the 
Coriolis region satisfied by these three relations is shown versus Re* JSZJ v,/ui, where the 
constants K,, K,  and K3 are assumed to be 50,0.015 and 0.3, respectively. The relations 
(24) and (25) are drawn by solid lines, while (26) is drawn by broken lines for various 
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values of Re*. Since the slope of a broken line, K,/Re*, becomes steeper as Re* 
decreases, it coincides with the line of equation (24) when Re* = K J K ,  (= 170). This 
means that the Coriolis region, shown hatched, does not exist when Re* < 170. 
However, the experimental results show that in fact it does exist even for lower Re* 
conditions. This is because there is a marginal region where (24) is not satisfied yet the 
velocity follows the Coriolis region formula. To include this marginal region in the 
Coriolis region, the constant K3 should be altered from 0.3 to 0.7. The lower boundary 
of the Coriolis region, given by (26), is in good agreement with the experimental results. 
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and 0.3. 

Core region velocity profiles expressed by the modified defect law using the relation 
(31) are shown in figure 25(a,b). For simplicity, we indicate only the data for Re = 
10000 and 3700. As for high-(QlD/u, flows, the data of Johnston et al. (1972) and 
Kristoffersen & Andersson (1 993) are reproduced. On the pressure side, in figure 25 (a), 
it is seen that the velocity follows the defect law, equation (31), where the velocity 
distribution depends only on QD/u,. The range of the defect law depends on Re, for 
example 0.1 < l.&iJD for Re = 10000 (open-headed arrow) and 0.2 < l.O-C/D for 
Re = 3700 (solid-headed arrow). The velocity lies below the profile for the non-rotating 
flow and approaches zero as QD/u ,  increases. When QD/u, > 1.6, it lies on the base 
line (zero value), and the distribution does not change thereafter. This means that most 
of the core region has zero mean absolute vorticity when QD/u ,  > 1.6. 

On the suction side, however, there is no obvious pattern for the velocity 
distributions (figure 25b). As a whole, the velocities are distributed above the profile 
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of non-rotating flow, but their distribution depends on QD/u,  and Re. Such an Re- 
dependence may be caused by the low Re prevailing on the suction side. 

5. Concluding remarks 
Turbulent channel flows that are influenced both by the Coriolis force and low 
Reynolds number effects are studied. The controlling parameters are Re* and Qv/u i  
for the wall region and QD/u,  and Re* for the core region. These parameters, which 
are ratios among the three length scales (i.e. viscous, Coriolis and outer length scales), 
are sufficient to describe the flow. From the experimental data, the constants K,, K, and 
K3 in equation (6) are about 30-50, 0.008-0.015 and 0.2-0.3, respectively. The flow 
diagram shows geometrically how the flow structure changes with these parameters. 
The rate of change of skin friction due to the Coriolis force can be expressed as a 
function of Qv/u i  except when the flow is relaminarized. On the suction side there are 
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two cases in which the flow is relaminarized: (i) the Coriolis force stabilizing effect is 
responsible for it in the case Re 2 2500; and (ii) both the Coriolis force and low 
Reynolds number effects are responsible for it in the case of Re less than 2500. 

The law of the wall is modified by the length scales 6, and D is (Q(v/u2, is large 
and/or Re* is small. The low Reynolds number effect affects C, (the additive constant 
of the log-law) and the Van-Driest damping factor A+ but not K .  The Coriolis force 
effect alters both C, and K as functions of Qvlu2,. The lower boundary of the distance 
from the wall beyond which the Coriolis force effects appears, yly0, depends only on (Q( 
v/ui. The Coriolis region is shown to exist where the Coriolis length scale 8, is the only 
scale affecting the flow and the velocity follows equation (23). The velocity defect law, 
modified by the Coriolis force effect, shows that on the pressure side the velocity 
distribution in the core region depends on QD/u,, and the mean absolute vorticity 
there is zero when Q D / u ,  > 1.6. 
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